Solution to The recursive definition of a function X is given as: f(0)=5 and f(n)=f(n-2)+5 Now, find … - Sikademy
Author Image

Archangel Macsika

The recursive definition of a function X is given as: f(0)=5 and f(n)=f(n-2)+5 Now, find out the value of f(14) using the above function.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

There is the mistake in the question. We don't know f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75There is the mistake in the question. We don't know 

f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5

f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3666-qpid-2365