**Use any of the two proof methods to prove: ((~a^b)^(b^c))^~b**

The **Answer to the Question**

is below this banner.

**Here's the Solution to this Question**

Direct Proof:

$((\neg a\land b)\land(b\land c))\land \neg b\equiv \neg a\land b\land c \land \neg b\equiv \neg a \land c \land 0\equiv 0$

Proof by Contrapositive:

$\neg(((\neg a\land b)\land(b\land c))\land \neg b)\equiv \neg (\neg a \land c \land 0)\equiv \neg0\equiv 1$

so,

$((\neg a\land b)\land(b\land c))\land \neg b\equiv 0$