Solution to (a) Use Fermat’s little theorem to compute: 4101 mod 5, 4101 mod 7, 4101 mod … - Sikademy
Author Image

Archangel Macsika

(a) Use Fermat’s little theorem to compute: 4101 mod 5, 4101 mod 7, 4101 mod 11. (b) Use your results from part (a) and the Chinese Remainder Theorem to compute 4 101 mod 385. (note that 385 = 5 × 7 × 11).

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a) 4^{101} mod 5

4^2mod5=1

4^{101}mod5=4^{100+1}mod5=(4*4^{2*50})mod5=(4*(4^{2})^{50})mod5=4*1^{50}=4

b) 4^{101} mod 7

4^3mod7=1

4^{101}mod7=4^{100+1}mod7=(4^2*4^{3*33})mod7=(4^2*(4^{3})^{33})mod7=(4^2*1^{33})mod7=2

c) 4^{101} mod 11

4^5 mod 11=1

4^{101}mod11=4^{100+1}mod11=(4*4^{5*20})mod11=(4*(4^{5})^{20})mod11= 4*1^{20}=4


We have that M{\scriptscriptstyle 1}={\frac {385} 5}=77 , and the inverse of 77 modulo 5 is y1 = 3. As well, M{\scriptscriptstyle 1}={\frac {385} 7}=55 , and the inverse of 55 modulo 7 is y2 = 6. Finally, M{\scriptscriptstyle 1}={\frac {385} {11}}=35 , and the inverse of 35 modulo 11 is y3 = 6. Thus, by the Chinese Remainder Theorem, the solution has the form:

4^{101}mod385= (4*77*3(mod385) +2*55*6(mod385) +4*35*6(mod385)) mod385 =

= 114


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-1149-qpid-887