Let us give a proof of the Binomial Theorem using mathematical induction. We will need to use Pascal's identity in the form:
(nr−1)+(nr)=(n+1r) for 0<r≤n.
We aim to prove that
(a+b)n=an+(n1)an−1b+(n2)an−2b2+⋯+(nr)an−rbr+⋯+(nn−1)abn−1+bn.
We first note that the result is true for n=1 and n=2: (a+b)1=a+b and (a+b)2=a2+2ab+b2=a2+(21)ab+b2.
Let k be a positive integer with k≥2 for which the statement is true. So
(a+b)k=ak+(k1)ak−1b+(k2)ak−2b2+⋯+(kr)ak−rbr+⋯+(kk−1)abk−1+bk
Now consider the expansion
(a+b)k+1=(a+b)(a+b)k=
=(a+b)(ak+(k1)ak−1b+(k2)ak−2b2+⋯+(kr)ak−rbr+⋯+(kk−1)abk−1+bk)=
=ak+1+[1+(k1)]akb+[(k1)+(k2)]ak−1b2+⋯+[(kr−1)+(kr)]ak+1−rbr+⋯+[(kk−1)+1]abk+bk+1
From Pascal's identity, it follows that
(a+b)k+1=ak+1+(k+11)akb+(k+12)ak−1b2+⋯+(k+1r)ak+1−rbr+⋯+(k+1k)abk+bk+1
Hence the result is true for k+1. By induction, the result is true for all positive integers n.