Solution to Use Mathematical Induction to prove the Binomial Theorem. - Sikademy
Author Image

Archangel Macsika

Use Mathematical Induction to prove the Binomial Theorem.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Let us give a proof of the Binomial Theorem using mathematical induction. We will need to use Pascal's identity in the form:


\left(\begin{array}{c}n\\r-1\end{array}\right)+\left(\begin{array}{c}n\\r\end{array}\right)=\left(\begin{array}{c}n+1\\r\end{array}\right) for 0<r\le n.


We aim to prove that


(a+b)^n=a^n+\left(\begin{array}{c}n\\1\end{array}\right)a^{n−1}b+\left(\begin{array}{c}n\\2\end{array}\right)a^{n−2}b^2+⋯+\left(\begin{array}{c}n\\r\end{array}\right)a^{n−r}b^r +⋯+\left(\begin{array}{c}n\\n-1\end{array}\right)ab^{n−1}+ b^n.


We first note that the result is true for n=1 and n=2: (a+b)^1=a+b and (a+b)^2=a^2+2ab+b^2=a^2+\left(\begin{array}{c}2\\1\end{array}\right)ab+b^2.


Let k be a positive integer with k≥2 for which the statement is true. So


(a+b)^k=a^k+\left(\begin{array}{c}k\\1\end{array}\right)a^{k−1}b+\left(\begin{array}{c}k\\2\end{array}\right)a^{k−2}b^2+⋯+\left(\begin{array}{c}k\\r\end{array}\right)a^{k−r}b^r +⋯+\left(\begin{array}{c}k\\k-1\end{array}\right)ab^{k−1}+ b^k


Now consider the expansion


(a+b)^{k+1}=(a+b)(a+b)^k=


=(a+b)(a^k+\left(\begin{array}{c}k\\1\end{array}\right)a^{k−1}b+\left(\begin{array}{c}k\\2\end{array}\right)a^{k−2}b^2+⋯+\left(\begin{array}{c}k\\r\end{array}\right)a^{k−r}b^r +⋯+\left(\begin{array}{c}k\\k-1\end{array}\right)ab^{k−1}+ b^k)=


=a^{k+1}+\left[1+\left(\begin{array}{c}k\\1\end{array}\right)\right]a^{k}b+\left[\left(\begin{array}{c}k\\1\end{array}\right)+\left(\begin{array}{c}k\\2\end{array}\right)\right]a^{k−1}b^2+⋯+\left[\left(\begin{array}{c}k\\r-1\end{array}\right)+\left(\begin{array}{c}k\\r\end{array}\right)\right]a^{k+1−r}b^r +⋯+\left[\left(\begin{array}{c}k\\k-1\end{array}\right)+1\right]ab^{k}+ b^{k+1}


From Pascal's identity, it follows that


(a+b)^{k+1}=a^{k+1}+\left(\begin{array}{c}k+1\\1\end{array}\right)a^{k}b+\left(\begin{array}{c}k+1\\2\end{array}\right)a^{k−1}b^2+⋯+\left(\begin{array}{c}k+1\\r\end{array}\right)a^{k+1−r}b^r +⋯+\left(\begin{array}{c}k+1\\k\end{array}\right)ab^{k}+ b^{k+1}


Hence the result is true for k+1. By induction, the result is true for all positive integers n.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3578-qpid-2277