Solution to Use the properties to verify the logical equivalences in the following. Supply a reason for … - Sikademy
Author Image

Archangel Macsika

Use the properties to verify the logical equivalences in the following. Supply a reason for each step. a. (p ∧∼ q) ∨ p ≡ p b. p ∧ (∼ q ∨ p) ≡ p c. ∼ (p ∨∼ q) ∨ (∼ p ∧∼ q) ≡ ∼ p d. ∼ ((∼ p ∧ q) ∨ (∼ p ∧∼ q)) ∨ (p ∧ q) ≡ p e. (p ∧ (∼ (∼ p ∨ q))) ∨ (p ∧ q) ≡ p

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a. (p \land \sim q) \lor p \equiv [By the Absorption law] \equiv (p \land \sim q) \lor (p \lor (p \land q))\equiv [By the Associative and Commutative laws] \equiv ((p \land \sim q) \lor (p \land q)) \lor p ) \equiv [By the Distributive law] \equiv ((p \land (\sim q \lor q)) \lor p) \equiv [By the Negation law] \equiv ((p \land t) \lor p) \equiv [By the Identity law] \equiv p \lor p \equiv [By the Idempotent law] \equiv p

b. p \land (\sim q \lor p) \equiv [By the Distributive law] \equiv (p \land \sim q)\lor (p \land p) \equiv [By the Idempotent law] \equiv (p \land \sim q)\lor p \equiv [Equivalent to expression a.\equiv p

c. \sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv [By the De Morgan's law] \equiv \sim (p \lor \sim q) \lor \sim (p \lor q) \equiv [By the De Morgan's law] \equiv \sim ((p \lor \sim q) \land \ (p \lor q)) \equiv [By the Distributive law] \equiv \sim (p \lor (\sim q \land q)) \equiv [By the Negation law] \equiv \sim (p \lor c) \equiv [By the Identity law] \equiv \sim p

d. \sim ((\sim p \land q) \lor (\sim p \land \sim q)) \lor (p \land q) \equiv [By the Distributive law] \equiv \sim (\sim p \land (q \lor \sim q)) \lor (p \land q) \equiv [By the Negation law] \equiv \sim (\sim p \land t) \lor (p \land q) \equiv [By the Identity law] \equiv p \lor (p \land q) \equiv [By the Absorption law] \equiv p

e. ( p \land (\sim (\sim p \lor q))) \lor (p \land q) \equiv [By the De Morgan's law] \equiv ( p \land ( p \land \sim q)) \lor (p \land q) \equiv [By the Associative law] \equiv (( p \land p) \land \sim q) \lor (p \land q) \equiv [By the Idempotent law] \equiv ( p \land \sim q) \lor (p \land q) \equiv [By the Distributive law] \equiv p \land (\sim q \lor q) \equiv [By the Negation law] \equiv p \land t \equiv [By the Identity law] \equiv p


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-3302-qpid-2001