AnswersComputer ScienceDiscrete MathematicsWhat and Define Equivalent formula or laws of algebra of propositionsJune 04, 2023Archangel MacsikaWhat and Define Equivalent formula or laws of algebra of propositionsThe Answer to the Questionis below this banner.Can't find a solution anywhere?NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?Get the Answers Now!You will get a detailed answer to your question or assignment in the shortest time possible.Here's the Solution to this Question↔Then\begin{gathered} (\neg p \vee q) \wedge(p \vee \neg q)(\text { Commutation }) \\ (\neg p \vee q) \wedge(\neg q \vee p) \text { (Implication) } \\ (p \rightarrow q) \wedge(q \rightarrow p) \text { (Equivalence) } \\ \qquad \begin{aligned} p & \leftrightarrow q \equiv(\text { Equivalence }) \\ (p \wedge q) & \vee(\neg p \wedge \neg q)(\text { DeMorgan }) \\ (p \wedge q) & \vee \neg(p \vee q)(\text { Commutation }) \\ \neg(p \wedge q) & \vee(p \wedge q)(\text { Implication }) \\ &(p \wedge q) \rightarrow(p \wedge q) \end{aligned} \end{gathered}(¬p∨q)∧(p∨¬q)( Commutation )(¬p∨q)∧(¬q∨p) (Implication) (p→q)∧(q→p) (Equivalence) p(p∧q)(p∧q)¬(p∧q)↔q≡( Equivalence )∨(¬p∧¬q)( DeMorgan )∨¬(p∨q)( Commutation )∨(p∧q)( Implication )(p∧q)→(p∧q)