Solution to which of the following statement is true a. \\((p\\wedge q)\\vee (p\\vee r)=p\\vee (q\\wedge r)\\) b. … - Sikademy
Author Image

Archangel Macsika

which of the following statement is true a. \\((p\\wedge q)\\vee (p\\vee r)=p\\vee (q\\wedge r)\\) b. \\((p\\vee q)\\wedge (p\\vee r)=p\\vee (q\\wedge r)\\) c. \\(\\sim (p\\vee q)=\\sim (p\\wedge \\sim q)\\) d. \\((p\\wedge q)\\wedge (p\\vee r)=p\\vee (q\\wedge r)\\)

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

a. (p\wedge q)\vee (p\vee r)=p\vee (q\wedge r)

Solution.

\begin{matrix} p & q & r & p\wedge q & p\vee r & (p\wedge q)\vee (p\vee r) & q\wedge r & p\vee (q\wedge r) \\ F & F & T & F & T & T & F & F \end{matrix}

There is a row in the truth table above where the truth values of (p\wedge q)\vee (p\vee r)  and p\vee (q\wedge r)  are different. Hence the given statement is false. (In this case, other rows of the truth table are not important.)

Answer. False.

b. (p\vee q)\wedge (p\vee r)=p\vee (q\wedge r)

Solution.

\begin{matrix} p & q & r & p\vee q & p\vee r & (p\vee q)\wedge (p\vee r) & q\wedge r & p\vee (q\wedge r) \\ F & F & F & F & F & F & F & F \\ F & F & T & F & T & F & F & F \\ F & T & F & T & F & F & F & F \\ F & T & T & T & T & T & T & T \\ T & F & F & T & T & T & F & T \\ T & F & T & T & T & T & F & T \\ T & T & F & T & T & T & F & T \\ T & T & T & T & T & T & T & T \end{matrix}

In all rows, the truth values of (p\vee q)\wedge (p\vee r)  and p\vee (q\wedge r)  are equal. Hence the given statement is true.

Answer. True.

c. \sim (p\vee q) = \sim (p\wedge \sim q)

Solution.

\begin{matrix} p & q & p\vee q & \sim (p\vee q) & \sim q & p\wedge \sim q & \sim (p\wedge \sim q) \\ F & T & T & F & F & F & T \end{matrix}

There is a row in the truth table above where the truth values of \sim (p\vee q)  and \sim (p\wedge \sim q)  are different. Hence the given statement is false. (In this case, other rows of the truth table are not important.)

Answer. False.

d. (p\wedge q)\wedge (p\vee r)=p\vee (q\wedge r)

Solution.

\begin{matrix} p & q & r & p\wedge q & p\vee r & (p\wedge q)\wedge (p\vee r) & q\wedge r & p\vee (q\wedge r) \\ T & F & F & F & T & F & F & T \end{matrix}

There is a row in the truth table above where the truth values of (p\wedge q)\wedge (p\vee r)  and p\vee (q\wedge r)  are different. Hence the given statement is false. (In this case, other rows of the truth table are not important.)

Answer. False.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-5-stid-8-sqid-4080-qpid-2779