Solution to Consider the population consisting of 1, 2, 3, 5, 6, and 7. Suppose samples of … - Sikademy
Author Image

Archangel Macsika

Consider the population consisting of 1, 2, 3, 5, 6, and 7. Suppose samples of size 4 are drawn from this population. Describe the sampling distribution of the sample means. Compute for the mean and the variance of the sampling distribution of the sample means. Be guided by the first illustration. STEPSSOLUTION1. Compute the mean of the population.2. Compute the variance of the population.3. Determine the number of possible samples of size n = 44. List all possible samples and compute their corresponding means.5. Construct the sampling distribution of the sample means.6. Compute the mean of the sampling distribution of the sample mean.7. Compute the variance of the sampling distribution of the sample means.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

We have population values 1,2,3,5,6, 7 population size N=6.

1.


mean=\mu=\dfrac{1+2+3+5+6+7}{6}=4

2


Variance=\sigma^2=\dfrac{1}{6}((1-4)^2+(2-4)^2




+(3-4)^2+(5-4)^2+(6-4)^2+(7-4)^2)=\dfrac{14}{3}




\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{14}{3}}\approx2.160247



3. The population size N=6 and sample size n=4.

Thus, the number of possible samples which can be drawn without replacements is \dbinom{6}{4}=15.


4.


\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean\ (\bar{x}) \\ \hline 1,2,3,5 & 2.75 \\ \hdashline 1,2,3,6 & 3 \\ \hdashline 1,2,3,7 & 3.25 \\ \hdashline 1,2,5,6 & 3.5 \\ \hdashline 1,2,5,7 & 3.75 \\ \hdashline 1,2,6,7 & 4 \\ \hdashline 1,3,5,6 & 3.75 \\ \hdashline 1,3,5,7 & 4 \\ \hdashline 1,3,6,7 & 4.25 \\ \hdashline 1,5, 6,7 & 4.75 \\ \hdashline 2,3,5,6 & 4 \\ \hdashline 2,3,5,7 & 4.25 \\ \hdashline 2,3,6,7 & 4.5 \\ \hdashline 2,5,6,7 & 5 \\ \hdashline 3,5,6,7 & 5.25 \\ \hdashline \end{array}



5. The sampling distribution of the sample mean \bar{x} and its mean and standard deviation are:


\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{x} & f & f(\bar{x}) & \bar{x}f(\bar{x}) & \bar{x}^2f(\bar{x})\\ \hline & 2.75 & 1 & 1/15 & 11/60 & 121/240 \\ \hdashline & 3 & 1 & 1/15 & 12/60 & 144/240 \\ \hdashline & 3.25 & 1 & 1/15 & 13/60 & 169/240 \\ \hdashline & 3.5 & 1 & 1/15 & 14/60 & 196/240 \\ \hdashline & 3.75 & 2 & 2/15 & 30/60 & 450/240 \\ \hdashline & 4 & 3 & 3/15 & 48/60 & 768/240 \\ \hdashline & 4.25 & 2 & 2/15 & 34/60 & 578/240 \\ \hdashline & 4.5 & 1 & 1/15 & 18/60 & 324/240 \\ \hdashline & 4.75 & 1 & 1/15 & 19/60 & 361/240 \\ \hdashline & 5 & 1 & 1/15 & 20/60 & 400/240 \\ \hdashline & 5.25 & 1 & 1/15 & 21/60 & 441/240 \\ \hdashline Sum= & & 15 & 1 & 4 & 247/15 \\ \hdashline \end{array}

6.


\mu_{\bar{X}}=E(\bar{X})=\sum\bar{x}f(\bar{x})=4


7.


Var(\bar{X})=\sigma_{\bar{X}}^2=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2




=\dfrac{247}{15}-4^2=\dfrac{7}{15}




\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{\dfrac{7}{15}}\approx0.683130



Check


\mu_{\bar{X}}=E(\bar{X})=4=\mu




Var(\bar{X})=\dfrac{7}{15}=\dfrac{\sigma^2}{n}\cdot\dfrac{N-n}{N-1}=\dfrac{14}{3(4)}\cdot\dfrac{6-4}{6-1}

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-46-sqid-1606-qpid-76