Solution to Find number of students securing marks >104, between 155-165, <55 from the following class data. … - Sikademy
Author Image

Archangel Macsika

Find number of students securing marks >104, between 155-165, <55 from the following class data. Class(marks) frequency (students) 0-20 210 20-40 115 40-60 130 60-80 220 80-100 120 100-120 101 120-140 120 140-160 144 160-180 132 180-200 190

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Marks frequency(f) cumulative frequency(cf)

0-20 210 210

20-40 115    325

40-60 130 455

60-80 220 675

80-100 120 795

100-120  101 896

120-140 120  1016

140-160 144 1160

160-180 132 1292

180-200   190 1482

We are required to find the number of students securing marks greater than 104. To do so, we need to determine the i^{th} percentile such that P_i=104. First is to determine the value of i which in turn will be used to find the position of the 104^{th} mark. The position of the 104^{th} mark is its cumulative frequency. We proceed as follows,

P_i={l+({i\times n\over100}-cf)\times{c\over f}} where, n=1482

l is the lower class boundary of the class with 104 marks

cf is the cumulative frequency of the class preceding the class consisting of the mark, 104

c is the width of the class with the 104th mark

f is the frequency of the class with the 104th mark

Therefore,

P_i=100+(14.82i-795)\times {20\over101}=104

So,

20.2=14.82i-795\implies 14.82i=815.2\implies i=55.0067476

The mark, 104 is approximately the 55^{th} percentile. Its position is, {i\times n\over 100}={55\times1482\over 100}=815.2\approx 816

Now, the cumulative frequency of the 104^{th} mark is approximately 816.

The number of students securing marks greater than 104 is 1482-816=666

Therefore, the number of students securing marks greater than 104 is 666.



b)

To find the number of students securing marks between 155 and 165, we find the cumulative frequencies for both scores and then determine the difference of their frequencies. That is, cf_{165}-cf_{155}.


The cumulative frequency of the 155^{th} mark.

We determine the value i such that, P_i=155 where P_i is the i^{th} percentile given as,

Pi=l+({i×n\over100}−cf)\times {c\over f} where, n=1482

l is the lower class boundary of the class with the 155^{th} mark.

cf is the cumulative frequency of the class preceding the class with the 155^{th} mark.

c is the width of the class with the 155th mark

f is the frequency of the class with the 155^{th} mark

Now,

P_i=140+(14.82i-1016)\times {20\over 144}=155

So,

108=14.82i-1016\implies i=75.8434548\approx76

The score of 155 is the 76^{th} percentile. Its cumulative frequency is, {76\times 1482\over 100}=1124

Therefore, the number of students securing below 155 marks is 1124


 The cumulative frequency of the 165^{th} mark.

We determine the value i such that, P_i=165 where P_i is the i^{th} percentile given as,

Pi=l+({i×n\over100}−cf)\times {c\over f} where, n=1482

l is the lower class boundary of the class with the 165^{th} mark.

cf is the cumulative frequency of the class preceding the class with the 165^{th} mark.

c is the width of the class with the 165^{th} mark

f is the frequency of the class with the 165^{th} mark

Now,

P_i=160+(14.82i-1160)\times {20\over 132}=165

So,

33=14.82i-1160\implies i=80.4993252\approx81

The score of 165 is the 81^{st} percentile. Its cumulative frequency is, {81\times 1482\over 100}=1193

Therefore, the number of students securing below 165 marks is 1193


Therefore, cf_{165}=1193 and cf_{155}=1124 . The number of students securing marks between 155 and 165 is 1193-1124=69 students.


c)

The cumulative frequency of the 55^{th} mark.

We determine the value i such that, P_i=55 where P_i is the i^{th} percentile given as,

Pi=l+({i×n\over100}−cf)\times {c\over f} where, n=1482

l is the lower class boundary of the class with the 55^{th} mark.

cf is the cumulative frequency of the class preceding the class with the 55^{th} mark.

c is the width of the class with the 55^{th} mark

f is the frequency of the class with the 55^{th} mark

Now,

P_i=40+(14.82i-325)\times {20\over 130}=55

So,

97.5=14.82i-325\implies i=28.5087719\approx29

The score of 55 is the 29^{th} percentile. Its cumulative frequency is, {29\times 1482\over 100}=422.5\approx 423

Therefore, the number of students securing below 55 marks is 423.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-46-sqid-2395-qpid-865