Solution to A group of students got the following scores in a test:9,12,15,18,21 and 24. Consider samples … - Sikademy
Author Image

Archangel Macsika

A group of students got the following scores in a test:9,12,15,18,21 and 24. Consider samples of size 3thag can be drawn from this population. List all the possible samples and the corresponding determine and list all possible samples and the corresponding sample means

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

The number of possible samples of size 3 without replacement can be calculated as \dbinom{6}{3}=\dfrac{6!}{3!(6-3)!}=20.

\mu=\dfrac{9+12+15+18+21+24}{6}=16.5

\sigma^2=\dfrac{1}{6}((9-16.5)^2+(12-16.5)^2+(12-16.5)^2

+(18-16.5)^2+(21-16.5)^2+(24-16.5)^2)=\dfrac{157.5}{6}

\def\arraystretch{1.5} \begin{array}{c:c:c} & Sample & Mean \\ \hline & 9,12,15 & 12\\ \hdashline & 9,12,18 & 13\\ \hdashline & 9,12,21 & 14\\ \hdashline & 9,12,24 & 15\\ \hdashline & 9,15,18 & 14\\ \hdashline & 9,15,21 & 15\\ \hdashline & 9,15,24 & 16\\ \hdashline & 9,18, 21 & 16\\ \hdashline & 9,18,24 & 17\\ \hdashline & 9,21,24 & 18\\ \hdashline & 12,15,18 & 15\\ \hdashline & 12,15,21 & 16\\ \hdashline & 12,15,24 & 17\\ \hdashline & 12,18, 21 & 17\\ \hdashline & 12,18, 24 & 18\\ \hdashline & 12,21, 24 & 19\\ \hdashline & 15,18, 21 & 18\\ \hdashline & 15,18, 24 & 19\\ \hdashline & 15,21, 24 & 20\\ \hdashline & 18,21, 24 & 21\\ \hdashline \end{array}


\def\arraystretch{1.5} \begin{array}{c:c:c:c} & Mean, \bar{x_i} & f_i & p(\bar{x}_i) \\ \hline & 12 & 1 & 1/20 \\ \hdashline & 13 & 1 & 1/20 \\ \hdashline & 14 & 2 & 2/20 \\ \hdashline & 15 & 3 & 3/20 \\ \hdashline & 16 & 3 & 3/20 \\ \hdashline & 17 & 3 & 3/20 \\ \hdashline & 18 & 3 & 3/20 \\ \hdashline & 19 & 2 & 2/20 \\ \hdashline & 20 & 1 & 1/20 \\ \hdashline & 21 & 1 & 1/20 \\ \hdashline \end{array}

Check


\mu_{\bar{X}}=12(1/20)+13(1/20)+14(2/20)+15(3/20)

+16(3/20)+17(3/20)+18(3/20)+19(2/20)


+20(1/20)+21(1/20)=330/20=16.5=\mu

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-46-sqid-2089-qpid-559