We have population values 14, 19, 26, 31, 48, 53 14 , 19 , 26 , 31 , 48 , 53 population size N=6 N = 6 and sample size n=4. n = 4.
Thus, the number of possible samples which can be drawn without replacement is \dbinom{6}{4}=15. ( 4 6 ) = 15.
\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean(\bar{X}) \\ \hline 14, 19, 26, 31 & 22.5\\ \hdashline 14, 19, 26, 48 & 26.75\\ \hdashline 14, 19, 26, 53 & 28\\ \hdashline 14, 19, 31, 48 & 28\\ \hdashline 14, 19, 31, 53 & 29.25\\ \hdashline 14, 19, 48, 53 & 33.5\\ \hdashline 14, 26, 31, 48 & 29.75\\ \hdashline 14, 26, 31, 53 & 31\\ \hdashline 14, 26, 48, 53 & 35.25\\ \hdashline 14, 31, 48, 53 & 36.5\\ \hdashline 19, 26, 31, 48 & 31\\ \hdashline 19, 26, 31, 53 & 32.25\\ \hdashline 19, 26, 48, 53 & 36.5\\ \hdashline 19, 31, 48, 53 & 37.75\\ \hdashline 26, 31, 48, 53 & 39.5\\ \hdashline \end{array} S am pl e v a l u es 14 , 19 , 26 , 31 14 , 19 , 26 , 48 14 , 19 , 26 , 53 14 , 19 , 31 , 48 14 , 19 , 31 , 53 14 , 19 , 48 , 53 14 , 26 , 31 , 48 14 , 26 , 31 , 53 14 , 26 , 48 , 53 14 , 31 , 48 , 53 19 , 26 , 31 , 48 19 , 26 , 31 , 53 19 , 26 , 48 , 53 19 , 31 , 48 , 53 26 , 31 , 48 , 53 S am pl e m e an ( X ˉ ) 22.5 26.75 28 28 29.25 33.5 29.75 31 35.25 36.5 31 32.25 36.5 37.75 39.5
a.
The sampling distribution of the sample mean \bar{X} X ˉ is
\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline & 22.5 & 1 & 1/15 & 90/60 & 8100/240\\ \hdashline & 26.75 & 1 & 1/15 & 107/60 & 11449/240 \\ \hdashline & 28 & 2 & 2/15 & 224/60 & 25088/240\\ \hdashline & 29.25 & 1 & 1/15 & 117/60 & 13689/240 \\ \hdashline & 29.75 & 1 & 1/15 & 119/60& 14161/240 \\ \hdashline & 31 & 2 & 2/15 & 248/60 & 30752/240 \\ \hdashline & 32.25 & 1 & 1/15 & 129/60 & 16641/240\\ \hdashline & 33.5 & 1 & 1/15 & 134/60 & 17956/240 \\ \hdashline & 35.25 & 1 & 1/15 & 141/60 & 19881/240 \\ \hdashline & 36.5 & 2 & 2/15 & 292/60 & 42632/240 \\ \hdashline & 37.75 & 1 & 1/15 & 151/60 & 22801/240 \\ \hdashline & 39.5 & 1 & 1/15 & 158/60 & 24964/240 \\ \hdashline Sum= & & 16 & 1 & 191/6 & 124057/120\\ \hdashline \end{array} S u m = X ˉ 22.5 26.75 28 29.25 29.75 31 32.25 33.5 35.25 36.5 37.75 39.5 f 1 1 2 1 1 2 1 1 1 2 1 1 16 f ( X ˉ ) 1/15 1/15 2/15 1/15 1/15 2/15 1/15 1/15 1/15 2/15 1/15 1/15 1 X f ( X ˉ ) 90/60 107/60 224/60 117/60 119/60 248/60 129/60 134/60 141/60 292/60 151/60 158/60 191/6 X 2 f ( X ˉ ) 8100/240 11449/240 25088/240 13689/240 14161/240 30752/240 16641/240 17956/240 19881/240 42632/240 22801/240 24964/240 124057/120
b.The mean of the sample means is
\mu_{\bar{X}}=E(\bar{X})=191/6=\mu μ X ˉ = E ( X ˉ ) = 191/6 = μ
c.
Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2 Va r ( X ˉ ) = σ X ˉ 2 = E ( X ˉ 2 ) − ( E ( X ˉ ) ) 2
=\dfrac{124057}{120}-(\dfrac{191}{6})^2=\dfrac{7361}{360} = 120 124057 − ( 6 191 ) 2 = 360 7361
The standard error of the mean
\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{7361}{360}}\approx4.52186 σ X ˉ = σ X ˉ 2 = 360 7361 ≈ 4.52186