1
\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & f & Xf &X^2 & X^2f\\ \hline & 2 & 1/36 & 2/36 & 4 & 4/36 \\ \hdashline & 3 & 2/36 & 6/36 & 9 & 18/36 \\ \hdashline & 4 & 3/36 & 12/36 & 16 & 48/36 \\ \hdashline & 5 & 4/36 & 20/36 & 25 & 100/36 \\ \hdashline & 6 & 5/36 & 30/36 & 36 & 180/36 \\ \hdashline & 7 & 6/36 & 42/36 & 49 & 294/36 \\ \hdashline & 8 & 5/36 & 40/36 & 64 & 320/36 \\ \hdashline & 9 & 4/36 & 36/36 & 81 & 324/36 \\ \hdashline & 10 & 3/36 & 30/36 & 100 & 300/36 \\ \hdashline & 11 & 2/36 & 22/36 & 121 & 242/36 \\ \hdashline & 12 & 1/36 & 12/36 & 144 & 144/36 \\ \hdashline Sum & & 1 & 7 & & 329/6 \end{array} S u m X 2 3 4 5 6 7 8 9 10 11 12 f 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 1 X f 2/36 6/36 12/36 20/36 30/36 42/36 40/36 36/36 30/36 22/36 12/36 7 X 2 4 9 16 25 36 49 64 81 100 121 144 X 2 f 4/36 18/36 48/36 100/36 180/36 294/36 320/36 324/36 300/36 242/36 144/36 329/6
i)
E(X)=\sum_ix_ip(x_i)=7 E ( X ) = ∑ i x i p ( x i ) = 7
ii)
Var(X)=\sigma^2=E(X^2)-(E(X))^2 Va r ( X ) = σ 2 = E ( X 2 ) − ( E ( X ) ) 2
=329/6-7^2=35/6\approx5.83333 = 329/6 − 7 2 = 35/6 ≈ 5.83333
iii)
\sigma=\sqrt{\sigma^2}=\sqrt{35/6}\approx2.41523 σ = σ 2 = 35/6 ≈ 2.41523