Solution to 22. For a chi-square distribution,find x2\alpha such that a) P(X2 > x2\alpha) = 0:99 when … - Sikademy
Author Image

Mirian Woke

22. For a chi-square distribution,find x2\alpha such that a) P(X2 > x2\alpha) = 0:99 when df = 4; b) P(X2 > x2\alpha) = 0:025 when df = 19; c) P(37.652 < X2 < x2\alpha) = 0:045 when df = 25. 23. Find a) t0.025 when df = 14 b) -t0.10 when df = 10 c) t0.995 when df = 7. 24. Find a) P(T < 2:365) when df = 7; b) P(-1.356 < T < 2.179) when df = 12; c) P(T > 1.318) when df = 24; d) P(T > -2.567) when df = 17. 25. For an F-distribution, find the value of f such that a) P(F > f) = 0:05 when df1 = 4 and df2 = 9; b) P(F > f) = 0:05 when df1 = 9 and df2 = 4; c) P(F < f) = 0:95 when df1 = 5 and df2 = 8; d) P(f1 < F < f2) = 0:90 when df1 = 3 and df2 = 9.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

22

a)

P(\chi^2 > \chi^2_\alpha) = 0.99 when df=4

Here we look at \alpha = 0.99 and df= 4 to find from \chi^2 tables.,

P(X^2 > 0.297) = 0.99

χ^ 2_{\alpha} = \chi^ 2_{ 0.99 }= 0.297 for df = 4


b)

P(X^2 \gt \chi^2_{\alpha}) = 0.025 when df = 19

Here we look at \alpha =0.025 and df=19 to find,

P(X^2 \gt 32.852) = 0.025

So,

\chi^2_{\alpha}=\chi^2_{0.025}=32.852


c)

P(37.652 \lt \chi^2 \lt \chi^2_{\alpha}) = 0.045  when df = 25

Here we rewrite the inequality in a way that we can use the table. We Note that

P(\chi^ 2_a \lt \chi^2 \lt \chi^2_b ) = P(\chi^ 2 \gt \chi^2_a ) − P(\chi^ 2 \gt \chi^2 _b ).

So,

P(37.652 \lt \chi^2 \lt \chi^2_{\alpha} ) = P(\chi^ 2 \gt 37.652) − P(\chi^ 2 \gt \chi^2_{\alpha} ) = 0.045.

 First we look at the table for df= 25 and identify the \chi^ 2_ {\alpha}  value for 37.652 and find,

\chi^ 2_{ 0.05} = 37.652  for df = 25.

Thus,

0.05 − P(\chi^ 2 \gt \chi^2_{\alpha}) = 0.045

or

P(\chi^ 2 \gt \chi^2_{\alpha}) = 0.005.

Now we use the table for \alpha= 0.005 and df = 25 to find,

 \chi^2_{ 0.005} = 46.928 for df = 25.


23

a)

t_{0.025 } when df = 14

From the t distribution table values, the t-value with df=14 leaving an area of 0.025 to the right is 2.145.

Therefore,

t_{{0.025,14}}=2.145


b)

-t_{0.10} when df = 10

We apply the property, -t_{\alpha}=t_{1-\alpha}.

For -t_{0.10,10}  we can write, -t_{0.10,10}=t_{1-0.10,10}=t_{0.90,10}

From tables, we have that,

t_{0.90,10}=-1.372184 


c)

t_{0.995} when df = 7

The value required here is the t distribution table value with df = 7 that leaves an area of 0.995 to the right. From the tables, t_{0.995,7}= -3.499483



24

a)

P(T \lt 2.365) when df=7

To use the table, we must transform the inequality to,

P(T \lt 2.365) = 1 − P(T \gt 2.365).

Using the table for df = 7 we see,

t_{0.025} = 2.365, for df= 7.

Thus,

P(T \lt 2.365) = 1 − 0.025 = 0.975.


b)

P(-1.356 \lt T \lt 2.179) when df = 12

Here we use symmetry for the fact that,

P(T \lt −t_{\alpha}) = P(T \gt t_{\alpha}).

Thus, we can write,

P(−1.356 \lt T \lt 2.179) = 1−P(−1.356 \gt T)−P(T \gt 2.179) = 1−P(T \gt 1.356)−P(T \gt 2.179).

Looking up these values in the table for df = 12 yields,

t_{0.10} = 1.356, and t_{0.025} = 2.179 for df = 12 . 

Therefore,

P(−1.356 \lt T \lt 2.179) = 1 − 0.10 − 0.025 = 0.875.


c)

P(T \gt 1.318) when df = 24.

Using the table directly for df = 24 yields,

t_{0.10} = 1.318

Thus,

P(T \gt 1.318) = 0.10.


d)

P(T \gt -2.567) when df = 17

Again, so we can use the table we write,

P(T \gt −2.567) = 1 − P(T \lt −2.567).

Then, symmetry gives,

P(T \gt −2.567) = 1 − P(T \lt −2.567) = 1 − P(T \gt 2.567)

The table gives,

t_{0.01} = 2.567 for df = 17

Therefore, P(T\gt-2.567)=1-0.01=0.99


25

a)

 P(F \gt f) = 0.05 when df_1 = 4 and df2 = 9 ;

Here, we look at the F distribution table value with numerator degrees of freedom equal to 4 and denominator degrees of freedom equal to 9 that leaves an area of 0.05 to the right given as,

f_{0.05,4,9}=3.86

So,

P(F \gt 3.86) = 0.05 when df_1=4 and df_2=9


b)

P(F \gt f) = 0.05 when df_1 = 9 and df_2 = 4 ;

Here, we look at the F distribution table value with numerator degrees of freedom equal to 9 and denominator degrees of freedom equal to 4 that leaves an area of 0.05 to the right given as,

f_{0.05,9,4}=6.00

Therefore,

P(F\gt6.00)=0.05 when df_1=9 and df_2=4


c)

P(F \lt f) = 0.95 when df_1 = 5 and df_2 = 8;

Here, f is a value with numerator degrees of freedom equal to 5 and denominator degrees of freedom equal to 8 that leaves an area of 0.95 to the left of the F distribution. So, this value is same as the value with numerator degrees of freedom equal to 5 and denominator degrees of freedom equal to 8 that leaves an area of 0.05 to the right of the F distribution. So, f_{0.05,5,8}=3.69.

Therefore,

P(F\lt 3.69)=0.95 when df_1=5 and df_2=8


d)

P(f_1 \lt F \lt f_2) = 0.90 when df_1 = 3 and df_2 = 9

We rewrite this as, P(f_1 \lt F \lt f_2)=P(F\gt f_1)-P(F\gt f_2) where, the value f_1 is the table value with df_1=3 and df_2=9 that leaves an area of 0.05 to the right or an area of 0.95 to the left, that is, f_{0.95,3,9} and f_2 is the table value with df_1=3 and df_2=9 that leaves an area of 0.05 to the right, that is, f_{0.05,3,9}.

So,

f_2=f_{0.05,3,9}=3.86 and f_1=f_{0.95,3,9}={1\over f_{0.05,9,3}}={1\over 8.81}=0.11

Therefore,

P(0.11 \lt F \lt 3.86) = 0.90 when df_1=3 and df_2=9.

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-47-sqid-5067-qpid-786