Solution to 1. Consider the random quantity X, with PDF fx(x) = {4/3(2x-x^2), 0<x<2 0, otherwise. i. … - Sikademy
Author Image

Peace Awoke

1. Consider the random quantity X, with PDF fx(x) = {4/3(2x-x^2), 0

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

Given that,

f(x)={3\over4}(2x-x^2), 0\lt x\lt 2\\0,elsewhere


a) verify that it is a pdf.

\displaystyle\int^2_0f(x)dx=\displaystyle\int^2_0{3\over4}(2x-x^2)dx ={3\over4}(x^2-{x^3\over3})|^2_0={3\over4}(4-{8\over3})={3\over4}\times{4\over3}=1.0

Therefore, it is a valid pdf.


b)

i) Expectation of X

It is given as,

E(x)=\displaystyle\int^2_0 xf(x)dx=\displaystyle\int^2_0{3\over4}(2x^2-x^3)dx={3\over4}({2\over3}x^3-{x^4\over4})|^2_0=1

ii) Variance of X

The variance of X is given as,

Var(x)=E(x^2)-(E(x))^2

We determine,

E(X^2)=\displaystyle\int^2_0 x^2f(x)dx=\displaystyle\int^2_0{3\over4}(2x^3-x^4)dx={3\over4}({x^4\over2}-{x^5\over5})|^2_0={6\over5}

Therefore,

var(x)={6\over5}-1^2={1\over5}


c)

The cumulative distribution for X is,

F(x)=\displaystyle\int^x_0f(u)du=\displaystyle\int^x_0{3\over4}(2u-u^2)du={3\over4}(u^2-{u^3\over3})|^x_0={3\over4}(x^2-{x^3\over3})

It can be written as,

F(x)={3\over4}(x^2-{x^3\over3}), 0\lt x\lt 2\\0,elsewhere


d)

To find the median, we find a value y such that,

\displaystyle\int^y_0f(x)dx=0.5

So,

\displaystyle\int^y_0{3\over4}(2x-x^2)dx={3\over4}(x^2-{x^3\over3})|^y_0={3\over4}(y^2-{y^3\over3})=0.5

We need to solve for the value of y

{3\over4}(y^2-{y^3\over3})=0.5\implies (y^2-{y^3\over3})={2\over3}\implies y^2(1-{y\over3})={2\over3}\implies y=0.82 \space or\space 1

The value of the median must be around the middle of the range (0,2). So the most appropriate value of the median is y=1

Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-47-sqid-4855-qpid-574