Given that,
f(x)=43(2x−x2),0<x<20,elsewhere
a) verify that it is a pdf.
∫02f(x)dx=∫0243(2x−x2)dx=43(x2−3x3)∣02=43(4−38)=43×34=1.0
Therefore, it is a valid pdf.
b)
i) Expectation of X
It is given as,
E(x)=∫02xf(x)dx=∫0243(2x2−x3)dx=43(32x3−4x4)∣02=1
ii) Variance of X
The variance of X is given as,
Var(x)=E(x2)−(E(x))2
We determine,
E(X2)=∫02x2f(x)dx=∫0243(2x3−x4)dx=43(2x4−5x5)∣02=56
Therefore,
var(x)=56−12=51
c)
The cumulative distribution for X is,
F(x)=∫0xf(u)du=∫0x43(2u−u2)du=43(u2−3u3)∣0x=43(x2−3x3)
It can be written as,
F(x)=43(x2−3x3),0<x<20,elsewhere
d)
To find the median, we find a value y such that,
∫0yf(x)dx=0.5
So,
∫0y43(2x−x2)dx=43(x2−3x3)∣0y=43(y2−3y3)=0.5
We need to solve for the value of y
43(y2−3y3)=0.5⟹(y2−3y3)=32⟹y2(1−3y)=32⟹y=0.82 or 1
The value of the median must be around the middle of the range (0,2). So the most appropriate value of the median is y=1