Solution to 1.Find the Domain and Range of the following functions if 𝑓: 𝑅 β†’ 𝑅 i) … - Sikademy
Author Image

Peace Awoke

1.Find the Domain and Range of the following functions if 𝑓: 𝑅 β†’ 𝑅 i) 𝑓(π‘₯) = 12 + π‘™π‘œπ‘” (1 βˆ’ π‘₯^2 ) ii) 𝑓(π‘₯) = π‘₯^2 +1/π‘₯^2 +5 2. Find if the functions are surjective, injective and bijective if 𝑓: 𝑅 β†’ 𝑅 i) 𝑓(π‘₯) = π‘₯^5 + 5 ii) 𝑓(π‘₯) = 𝑒^4π‘₯

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

1.

i)


f(x)=12+\log(1-x^2)

1-x^2>0=>-1<x<1

Domain:Β (-1, 1)


0<1-x^2\le1

Range:Β (-\infin, 12].


ii)


f(x)=x^2+\dfrac{1}{x^2}+5

x\not=0

Domain:Β (-\infin, 0)\cup (0, \infin)


x^2+\dfrac{1}{x^2}\ge2, x\in\R

Range:Β [7, \infin).


2)

i)


f(x)=x^5+5

f(x)Β is strictly increasing onΒ \R.Β So, ifΒ n, m\in \R, n\not=m,Β thenΒ n>mΒ orΒ n<m.

Without loss of generality, assume thatΒ n>m.

Then we haveΒ n^5+5>m^5+5.Β So ifΒ n\not=m,Β thenΒ f(n)\not=f(m).

Therefore the functionΒ f(x)=x^5+5Β is injective.


f(x)Β is strictly increasing onΒ \R.Β For everyΒ \forall y\in \R, \exist x\in \RΒ such that


f(x)=y

x^5+5=y=>x=(y-5)^{1/5}

Therefore the functionΒ f(x)=x^5+5Β is surjective.


f(x)Β is strictly increasing onΒ \R.Β For everyΒ \forall y\in \R, \exist! x\in \RΒ such that


f(x)=y

x^5+5=y=>x=(y-5)^{1/5}

Therefore the functionΒ f(x)=x^5+5Β is bijective.


ii)

𝑓(π‘₯) = 𝑒^{4π‘₯ }

f(x)Β is strictly increasing onΒ \R.Β So, ifΒ n, m\in \R, n\not=m,Β thenΒ n>mΒ orΒ n<m.

Without loss of generality, assume thatΒ n>m.

Then we haveΒ e^{4n}>e^{4m}Β . So ifΒ n\not=m,Β thenΒ f(n)\not=f(m).

Therefore the functionΒ f(x)=e^{4x}Β is injective.


IfΒ y\le0,Β we cannot findΒ x\in \RΒ such thatΒ f(x)=y.

Therefore the functionΒ f(x)=e^{4x}Β is not surjective and is not bijective.


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-47-sqid-4432-qpid-151