Solution to A population consist of the values 2,4,6 and 8 a) List all the possible sample … - Sikademy
Author Image

Peace Awoke

A population consist of the values 2,4,6 and 8 a) List all the possible sample size 2 when drawing with replacement and compute the mean of each sample. b)Construct the sampling distribution of the mean. c) Compute the mean, variance and standard deviation of the sample mean then compare these with the mean, Variance and standard deviation of the population.

The Answer to the Question
is below this banner.

Can't find a solution anywhere?

NEED A FAST ANSWER TO ANY QUESTION OR ASSIGNMENT?

Get the Answers Now!

You will get a detailed answer to your question or assignment in the shortest time possible.

Here's the Solution to this Question

We have population values 2,4,6,8 population size N=4 and sample size n=2.

Thus, the number of possible samples which can be drawn with replacement is 4^2=16.

a.


\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean(\bar{X}) \\ \hline 2,2 & 2\\ \hdashline 2,4 & 3\\ \hdashline 2,6 & 4\\ \hdashline 2,8 & 5\\ \hdashline 4,2 & 3\\ \hdashline 4,4 & 4\\ \hdashline 4,6 & 5\\ \hdashline 4,8 & 6\\ \hdashline 6,2 & 4\\ \hdashline 6,4 & 5\\ \hdashline 6,6 & 6\\ \hdashline 6,8 & 7\\ \hdashline 8,2 & 5\\ \hdashline 8,4 & 6\\ \hdashline 8,6 & 7\\ \hdashline 8,8 & 8\\ \hdashline \end{array}




b.The sampling distribution of the sample mean \bar{X} is


\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline & 2 & 1 & 1/16 & 2/16 & 4/16\\ \hdashline & 3 & 2 & 2/16 & 6/16 & 18/16 \\ \hdashline & 4 & 3 & 3/16 & 12/16 & 48/16\\ \hdashline & 5 & 4 & 4/16 & 20/16 & 100/16 \\ \hdashline & 6 & 3 & 3/16 & 18/16 & 108/16 \\ \hdashline & 7 & 2 & 2/16 & 14/16 & 98/16 \\ \hdashline & 8 & 1 & 1/16 & 8/16 & 64/16\\ \hdashline Sum= & & 16 & 1 & 5 & 55/2\\ \hdashline \end{array}

c.

\mu=\dfrac{2+4+6+8}{4}=5

\sigma^2=\dfrac{1}{4}((2-5)^2+(4-5)^2+(6-5)^2+(8-5)^2)

=5

Check

The mean of the sample means is


\mu_{\bar{X}}=E(\bar{X})=5=\mu




Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2

=\dfrac{55}{2}-(5)^2=\dfrac{5}{2}

The standard deviation of the sample means is


\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{5/2}

\dfrac{\sigma^2}{n}=\dfrac{5}{2}=\sigma^2_{\bar{X}}

\mu_{\bar{X}}=\mu

\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}


Related Answers

Was this answer helpful?

Join our Community to stay in the know

Get updates for similar and other helpful Answers

Question ID: mtid-4-stid-47-sqid-4451-qpid-170