Solution to Project Euler Problem 16: Power digit sum - 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000?
Updated: Jan. 16, 2021 — Training Time: 1 Minute
Overseen by: Archangel Macsika
All Training Resources
Scroll for more menu list
Topic: Project Euler Problem 16: Power digit sum.
Difficulty: Easy.
Objective: 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 21000?
Input: None.
Expected Output: 1366.
Sikademy Solution in Java Programming Language
package sikademy;
/**
*
* @author Archangel Macsika
* Copyright (c) Sikademy. All rights reserved
*/
import java.math.BigInteger;
public class SikademyEulerSolution {
public String run() {
String temp = BigInteger.ONE.shiftLeft(1000).toString();
int sum = 0;
for (int i = 0; i < temp.length(); i++)
sum += temp.charAt(i) - '0';
return Integer.toString(sum);
}
public static void main(String[] args) {
SikademyEulerSolution solution = new SikademyEulerSolution();
System.out.println(solution.run());
}
}
Sikademy Solution in Python Programming Language
#
# @author Archangel Macsika
# Copyright (c) Sikademy. All rights reserved.
#
def compute():
n = 2**1000
ans = sum(int(c) for c in str(n))
return str(ans)
if __name__ == "__main__":
print(compute())